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A method of successive computation of the parameters governing the equation for stabi- 

lization of linear systems based on the ideas of nonlinear programing and reducing to 
minimization of the original functional is described. We do not succeedin presenting a 

rigorous mathematical foundation. 

1, Let the perturbed motion of a stationary linear control system be described by the 
set of differential equations 

dXfdt = AX f BlJ (f.1) 

Here X is the column vector of the fundamental variables; A is a square ( n X n) mat- 

rix, B is the column vector of the control efficiency coefficients, and U is a scalar of 
the controlling effect of the regulator. 

It is assumed that the system (1.1) satisfies the controllability conditions. The matrices 
A, B are not degenerate, and the matrix q = 11 B, AB, A2B, . . . . A”-lBil is of rank n and 
consists of 1~ linearly independent vectors. It is required to seek the control law 

U = cx (1.“) 

assuring asymptotic stability of the unperturbed motion X = 0. It is assumed that the 
matrix C has the form of a row vector and yields a square (n x n ) matrix in the product 
BC . Substituting (1.2) into the system (1.1) we obtain 
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dX/dt = (A + BC) X (1.3) 

To solve the stabilization problem S let us utilize the second Liapunov method. We 
construct the quadratic form Vj as 

V = X’KX (1.4) 

Here K is a symmetric square (n X n ) matrix. Let W be the total derivative 

W = X*‘KX + X’KX 

After substituting (1.3) into (1.5) and multiplying by -1 we obtain 

- W =X*(T’+T)X, (T=-K(A+BC)) 

(1.5) 

(1.6) 

The matrices A, B are known in the stabilization problem. Let us assign the matrix 

K. Let us introduce the penalty function of the form 
2n 

M = 2 exp(-iQ@) (1.7) 
k=l 

Here Mkk are the principal diagonals of the minors of the discriminants of the quadratic 
forms (-W) and V; a factor CD exceeding +l is introduced to accelerate the computa- 
tions, and :n is the order of the system (1.1). The penalty function M, has an extremum 
within the domain of asymptotic stability. The dependence of the penalty function on 
the principal diagonals of the minors will evidently be as shown in Fig, 1, where L is the 

domain of asymptotic stability. A discrete or continuous 
algorithm can be utilized to minimize the penalty func- 

tion M of the row vector C _ The discrete algorithm is 
described by the recursion relationship 

c Cn n+1= -grad Mc.h (h is the spacing) (1.8) 

Here grad M, is the gradient of the penalty function 
with respect to the vector C. The continuous algorithm 

is described by the system of differential descent equa- 
tions in the domain of asymptotic stability 

Fig. 1 dC/dr = - BMIBC (t is auxiliary time) (1.9) 

The initial conditions can be given as random numbers. The boundary of the asymptotic 
stability domain L is equivalent to the fact that each member of (1.7) for the penalty 
function equals +l since exp 0 = j-1. The Sylvester inequalities can be satisfied by 
fixing the magnitude of each member of M. 

To enter the domain L it is sufficient to seek such values of the vector C by means 
of the algorithms (1.8) or (1.9), for which each member of ,M would be less than +l . 
All other stability ‘mequalities can be utilized in addition to Sylvester inequalities. Uti- 
lizing the Hurwitz inequalities, the penalty function has the form 

M = i erp (- I-I,,@) 
k=l 

(1.10) 

Here Hkk are the principal diagonals of the minors of the Hurwitz matrix. Accession to 
the domain L by means of the continuous and discrete algorithms is guaranteed only 
under the condition that it exists. 

The algorithms of descent into the domain L , (1.8) and (1.9). can be used to solve 
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optimal stabilization problems. They permit successive seeking for such values of the 
control law parameters in the system of quadratic equations ( [l], p.495) for which sta- 
bility and optimality of the control are guaranteed. To do this it is necessary to supple- 

ment the penalty function M by the sum of squares of residuals of the system of quadratic 
equations S F M + p = M + a2 + . . . + E+,~ (1.1:) 

and then to minimize S by means of the algorithms (1.8) or (1.9). The minimization 
processis continued even after entrance into the domain L until sufficient accuracy 

of the optimization is obtained. 

2. To illustrate the synthesis of stable 
systems by the method of nonlinear prog- 

raming, let us consider a linear sixth order 
system with five control parameters. 

The characteristic polynomial of the 

automatic system is 

A,# + A I~5 + A,t4 + A & + A4x’ + 

+A5x+As=0 (2.1) 

The coefficients of the characteristic poly- 

nomial depend on the parameters of the 

automatic system 

A, = ksC’ak,k, (2.2) 

A, = (k,k, + k,k,) C,C&,ke + (ks + 

+k,k,) ksC, + (C, + kG) k,kz 

A8 = (k,k, + kb) C,C4CSko + k&s (k, + 

+ k,) + (k3 + k,k,) (C, + keCz) + (Cs + 

+ ks) kaks 

A, = C, ((C4 + C,) W, + &M + 

+ klC4C,ks + C, (ks + c4) W, +k,)) + 

-j- (kz + k,) (C, + ksC,) + k&o + (ks + 

+ k,k,) (C, + ks) + k,k, 

From the conditions of the problem the coefficients ki had the following values: 

K, = 1.32, K2 = 0.00157, K, = 0.000197, K4 = 0.00019. K, = 0.93, K6 = 0.0064(2.3) 

The control parameters of the automatic system Ci are to be determined. In the zero 

approximation it was assumed that 

Cro = 60,0, C?, = 0.02, c,, = 0.7, c,, = cso = 0.001 (2.4) 

For these values of the control parameters, the characteristic polynomial of the automatic 
system (2.4) is not a Hurwitz polynomial: hence, the penalty function is MO = 27.948. 
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To descend into the stability domain, the standard ALGOL program for searching for 
the extremum of a function of five arguments by the gradient method was used. The 
penalty function (1.10). depending on the Hurwitz inequalities, was minimized by the 
discrete algorithm in the program. 

The lower bound Ci ,min = 0.0002, was imposed on the control parameters since they 
should not be negative. The factor @ to accelerate the computations was taken equal 
to @ = 10+is for values of Hkk < +i. 

The descent trajectory of the five control parameters of the automatic system and the 
stability domain were computed on the BESM-4 computer. The results of the computa- 

tion are shown in Fig.2. The values obtained for the control parameters are 

C, = 0.085614, Cz = 0.005035, c3 = 0.697956, cd = 0.0002, c, = 0.000367 (2.5) 

The penalty function is M = 5.99939. For these values of the control parameters the 

characteristic polynomial is a Hurwitz polynomial; its roots are 

lrg = -0.0064, h, = -0.001569 (2.6) 

ha,3 = -0.037662 + i 0.790725, h?,i = -0.000085 + i 0.014039 
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The criterion of existence of a periodic solution of the Liknard equation 

5” + f (z) 5’ + g (2) = 0 

is established. Definite constraints are imposed on the functions f (z) and g (I) , but only 

for a certain, sufficiently widerange of the values of 2, containing the coordinate origin. 

Let us replace the given equation with an equivalent system given by 

dx / dt = y, dy / dt = -yf (5) - 6 b) (1) 

and introduce the notation 

F (4 = 5 f (4 dx, G (x) = i g (5) dx, Q (5) = “G (I) - ‘ia Xzxz2 + h 5 F (5) dr 

0 0 0 

p (x) = 2F (x) - hx, r (x) = 2C (x) + F2 (x) - hxF (I) i_ h‘s F (x) dx 
0 

where ?, is any positive real number for which the conditions of the theorem hold. 


